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A high-throughput framework for determining adsorption

energies on solid surfaces

Joseph H. Montoya' and Kristin A. Persson'

In this work, we present a high-throughput workflow for calculation of adsorption energies on solid surfaces using density
functional theory. Using open-source computational tools from the Materials Project infrastructure, we automate the procedure of
constructing symmetrically distinct adsorbate configurations for arbitrary slabs. These algorithms are further used to construct and
run workflows in a standard, automated way such that user intervention in the simulation procedure is minimal. To validate our
approach, we compare results from our workflow to previous experimental and theoretical benchmarks from the CE27 database of
chemisorption energies on solid surfaces. These benchmarks also illustrate how the task of performing and managing over 200
individual density functional theory calculations may be reduced to a single submission procedure and subsequent analysis. By
enabling more efficient high-throughput computations of adsorption energies, these tools will accelerate theory-guided discovery
of advanced materials for applications in catalysis and surface science.
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INTRODUCTION

With applications in heterogeneous catalysis, medical imaging,
and microelectronics, surface science has been and will likely
continue to be key to developing advanced technologies. In
recent years, electronic structure simulations using density
functional theory (DFT) have greatly enhanced insights into the
chemical properties of solid surfaces." These calculations have
even been used to make successful predictions of new materials
with desirable catalytic properties for such processes as methanol
synthesis? and electrochemical hydrogen evolution.?

Despite these successes, most modern DFT-based surface
science uses an approach that relies heavily on human intuition
to perform and tune individual calculations of individual surfaces
and adsorbates. This reliance on human intuition stems partially
from the complexity of the electronic structure calculations
themselves, since ideal parameters specific to slabs and surfaces
may differ from those used in bulk structure and property
determination. However, recent efforts to perform bulk calcula-
tions in a high-throughput manner have demonstrated that many
of the intuitive aspects of determining solid properties like
thermodynamic stability,* elastic properties,” and surface energy®
using DFT can be effectively automated.

Nevertheless, the intuition required for successfully performing
surface slab and adsorption energy calculations is not purely that
of tuning electronic structure parameters. Providing initial guesses
for adsorbate structures based on bonding geometries and
selecting the sites for consideration of adsorption are also key
steps in most manual surface science workflows, and can be
difficult to automate in a comprehensive way. These tasks
essentially amount to a human pre-processing of slab geometries,
and are integral to ensuring that the adsorption energies that best
represent a given surface facet’s chemical reactivity are selected
for further modeling of such properties as catalytic activity or

theoretical overpotential. Global optimization of adsorbate
structures using constrained minima hopping,” metadynamics®
or Bayesian optimization’ may be used to exhaustively sample the
potential energy surface of a given system, but the computational
cost of these methods makes them unwieldy for a high-
throughput approach.

In this work, we present a workflow for performing DFT
calculations of slabs and adsorbed species by which high-
throughput operation might be achieved. In particular, we present
algorithms and tools for the automation of adsorption geometry
determination from structural properties of slabs and their
associated bulk structures. Furthermore, we present a standard
workflow using the automation tools of the Materials Project that
may be used to generate adsorption data from DFT in a high-
throughput manner. As an initial example, we demonstrate the
workflow by comparing its results to a data set from the CE27
chemisorption energy benchmarks.'® In addition to validating our
methods, these benchmarks illustrate how our workflow can be
used to flexibly handle a diverse set of adsorbates, slabs, and bulk
structures without explicit specification of adsorption geometries
or computational parameters for individual jobs, reducing the
management of over 200 DFT calculations (and potentially one to
two orders of magnitude more) to that of a single submission.

RESULTS AND DISCUSSION

We present benchmarked examples of how our workflow may be
used to generate first-principles adsorption energy data in high-
throughput. Our benchmarks are based on a test set that
corresponds to the CE27 database of chemisorption energies.
These data include chemisorption energies of H,, N, CO, O, and
NO on various low-index facets of elemental crystals. In our
benchmarking, we compare data generated from our automated
workflow to experimental chemisorption values from this
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Computational benchmarks, in which we compare results from our workflow to previously computed adsorption and surface energies.

Surface energy benchmarks are from Tran et al.® Note that our workflow may not include surface reconstructions accounted for in the

benchmarking set, which may account for small deviations. Calculated adsorption energy benchmarks are from Wellendorf et a

1.'° and include

chemisorption energies corresponding to materials and crystal facets featured in the CE27 database. Data for both chemisorption and surface
energy benchmarks are from calculations using the PBE functional. A table is provided in the Supplementary Informtation that includes details

on surface facets and data for surface and adsorption energies

database, as well as previously computed values from two
functionals commonly used to calculate adsorption energies.

Since clean slab calculations are necessary reference states in
adsorption energy calculations, data from our workflow may also
be used to estimate surface energies, which we benchmark with
recent work cataloging the surface energies of all elemental
crystals.® The resultant data closely matches the benchmarks from
previous calculations, as shown in Fig. 1a. These calculations are
essentially identical in methodology to our workflow, and thus are
very closely replicated with a mean-absolute error of 0.02eV.
Small deviations in this benchmarking comparison may be due to
surface reconstructions, which are treated more thoroughly in the
benchmarking study.

To benchmark adsorption energies, we refer to previous work
from Wellendorf et al. intended to catalog a variety of density
functionals for surface science.'® These results are also shown
in Fig. 1b, and compare to calculation benchmarks with a mean-
absolute-error of 0.2 eV. Due to limitations on the reported details
of the procedure used benchmarking study, it is not precisely clear
which elements of our workflow differ from that used in the
computational benchmarking set. However, we conjecture that the
observed discrepancies primarily arise from differences in optimi-
zation routines, DFT formalisms, and the different pseudopotentials
of the respective codes (GPAW'" '? vs. Vienna ab-initio software
package (VASP)). In addition, treatment of reference states, which
in our study are the uncorrected electronic energies of the
precursor molecule, may account for small systematic deviations
most notably observed in the oxygen adsorption energies.
Ultimately, however, the comparison seems robust enough to
capture trends in chemisorption behavior within DFT error and
therefore further establishes our workflow’s reliability.

We further catalog our initial results as benchmarked against the
CE27 database of experimental chemisorption energies.”>2' We
note here that changing the input parameters of all DFT calculations
is very simply achieved by the workflow modification tools present
in atomate, which we have used to run two identical workflows with
the Perdew-Burke-Emzerhof (PBE)*? and revised Perdew-Burke-
Ernzerhof (RPBE)*® functionals. As previously reported,'® ' # our
benchmarks in Fig. 2 show that results using RPBE are in much
closer quantitative agreement with experiment and that PBE
consistently underpredicts the chemisorption energies of molecules.
Both functionals consistently reproduce trends in the calculated
adsorption energies compared with experiment.
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Fig. 2 Experimental benchmarks, in which we compare results from
our workflow using both the PBE and RPBE functionals to
experimental chemisorption energies from the CE27 database

These examples evidence how our high-throughput approach
may be adapted for the determination of adsorption energies.
However, our infrastructure in its current form still has limitations,
which are the foci of future improvements. Complex adsorbate
molecules, such as H,O, HOO¥*, or CgHe, may require manual
intervention in workflow generation to include molecular config-
urations accounting for rotational degrees of freedom. Distinct
pairings of rotational configurations of molecules with surfaces
might be generated using similar geometric analysis of molecular
symmetry, but will likely remain complex. In addition, symme-
trically distinct adsorption sites on stepped and kinked surfaces,
particularly important to catalytic activity, are more numerous
than those that are typically accounted for in many human
workflows. Lastly, we note that kinetic barriers along reaction
pathways corresponding to bond breaking or formation and
coverage effects are key parameters in catalysis, and are not yet
accounted for in our approach. These, along with efforts toward
further understanding structure—property relationships relevant to
adsorption energies, are the subject of ongoing efforts. Recent
machine-learning approaches® and more advanced structural
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descriptors®® have been promising for improving understanding
of adsorption behavior. These approaches may also help to
understand which configurations and adsorption sites are most
likely representative of the most stable or catalytically active, and
thus they may help streamline the process of simulating these
phenomena.

METHODS

In this work, we introduce an algorithm for finding the adsorption sites on
an arbitrary surface. The algorithm initializes with a selection of the
“surface sites”, which can be designated manually, selected using a
threshold distance window from the largest extent of the slab along the
miller index, or selected by determining whether a given site is
undercoordinated relative to its bulk counterpart according to a Voronoi
coordination determination implemented in the pymatgen open-source
software.?® From this set of surface sites, a 2D Voronoi tessellation of their
coordinates (plus those in the adjacent periodic images from the slab)
projected onto the plane perpendicular to the miller index is calculated.
“On-top” sites are assigned to the surface sites themselves, while “bridge”
sites are assigned to the midpoints of the edges of the Voronoi tessellation.
As a result, “hollow” sites are assigned to the center of the ensemble of
sites that comprise a Voronoi face in the tessellation. Any sites generated
outside of the unit cell from the extended surface mesh are translated such
that they are placed inside the slab unit cell.
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The resultant sites are then filtered from two criteria. Sites within a
certain distance of another site, based on user input with a default of 0.1 A,
are discarded. Default operation of the algorithm then identifies sites
among these which are symmetrically equivalent according to the
symmetry operations of the slab structure. Ultimately, these filters yield
a set of symmetrically and geometrically distinct sites for an arbitrary slab,
contingent on the appropriate selection of surface sites. In Fig. 3a-d, we
show the result of progressive steps of our algorithm with a simple
example on Ni 111, for which the on-top, bridge, fcc (hollow), and hollow
sites are properly generated. We provide further examples of this
algorithm’s output and operation for alternate structures (including binary
and ternary oxides) and surfaces in the Supplementary Information.

From this set of adsorption sites, we generate a workflow similar to
those previously constructed for structure optimization and elastic tensor
determination.” This workflow is generated using the atomate code
package, which combines the open-source FireWorks®” and pymatgen®®
codes to create standard workflows for computational analysis of materials.
More specifically, the workflow we present herein begins with a standard
structure optimization in the VASP?® 2° to ensure the lattice constant is
converged within the user’s DFT parameters. This also allows the structure
to be optimized using a different parameter set than what is prescribed
in the standard materials project workflow, if desired. Previous workflows
designed with a similar purpose, i.e.,, conducting calculations that derive
properties from an initial calculation, have employed dynamic workflows in
the FireWorks package to generate new tasks on the fly during workflow
operation. However, in our experience, this approach presents main-
tenance difficulties, since the dynamic workflows are often difficult to

Fig. 3 Adsorption site selection for the Ni (111) slab, in which a periodic slab shown in (a) has its surface sites selected to generate a Delaunay
triangulation network (b), with which adsorption sites are placed at face edges, centers, and vertices (c) and filtered such that symmetrically
equivalent and very close sites are removed to yield a minimal set of distinct adsorption sites (d)
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Fig. 4 Atomate workflow for calculating adsorption energies: this workflow is generated in the atomate software package from structure,
VASP parameters, and adsorbate configuration inputs. The workflow begins with a stress-based structure optimization that branches into ionic
relaxation of slab and adsorbate geometries. In each task, the results of the VASP simulation are either stored in a database or output to the

filesystem in a JSON document
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debug if problems arise in the spawned tasks or in the initial tasks that
they are derived from. As such, we opt for a construction of a fixed number
of tasks at the outset of workflow construction. This is achieved by
analyzing the unoptimized input structure using the previously described
algorithms and storing each of the transformations necessary to construct
slabs and adsorbate structures as functions that take the optimized
structure resulting from the initial task as input.

Each FireWork implemented in the workflow conducts a preprocessing
step by which any system-specific parameters (e.g., parallelization or
algorithmic settings) are applied to the VASP input files, a VASP
optimization step run via the custodian job management framework that
can correct standard errors on the fly, and then a post-processing step by
which the results of the DFT simulation are collected, stored in a JavaScript
Object Notation (JSON) document, which may be uploaded to an external
database or output to the local filesystem. In Fig. 4, we sketch the general
structure of our workflow. Inputs to the surface absorption workflow
include a bulk structure, VASP parameters, and an “adsorbate configura-
tion”, which supplies the chemical identity and geometry of the adsorbate
in addition to the miller indices that adsorbate is to be placed on.
Ultimately, this allows a user to generate an entire workflow from a
minimal set of input parameters.

In the supplement, we include code used to generate both the workflow
used to calculate the benchmarking data from the CE27. In this example, a
specific facets of various metal surfaces corresponding specifically to those
included in the CE27 database are included by using the appropriate
atomate and pymatgen input parameters. However, we also note that the
workflow outlined herein can be used in a much more flexible way to
explore every distinct facet of a large variety of materials subject to user-
supplied constraints. To illustrate this, we include a further example in the
supplement that generates a workflow in which the binding energies for
oxygen evolution intermediates on various complex materials are
calculated for each distinct low-index facet of a given material, which
include distinct terminations of a given surface. The capacity of our
approach to achieve this more clearly distinguishes it from traditional
manual workflows in computational surfaces sciences that typically confine
themselves to easily constructed slabs or structural motifs, which may be
neither the most stable nor the most catalytically active.

In the Supplementary Information, we provide IPython notebooks with
the requisite package installation instructions and examples that may be
used to generate the structures and workflows involved in the two
benchmarking examples.
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